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ABSTRACT 

Commutative groups uniformly homeomorphic to certain Banach spaces 
are considered. Results on the relation between the structure of the topological 
group and the Banach space are obtained. 

In  this part  of  the paper we turn from the abstract approach to Hilbert 's  fifth 

problem to a more concrete approach and so we first give some necessary geo- 

metrical results. 

4. Roundness and uniform convexity 

4.1. We recall a definition f rom Enflo [2]: A metric space is said to have 

roundness p if  p is the supremum of the set of  q : s with the property:  for every 

quadruple of  points aoo, aol, a 1 s, alo we have 

[d(aoo, aol)] a + [d(aos, as s)] q + [d(al 1, aao)] q + [d(alo,  aoo)] q 

> [d(aoo, as 0]  4 + [d(aol, aso)] ~. (1) 

The triangle inequality shows that (1) is always satisfied for q = 1. I f  the metric 

space has the property that some pair of points has a metric middle point then (1) 

is not satisfied for all quadruples if q > 2. We see this by choosing aos to be the 

middle point between aoo and a l l  and putting aso = a o r  The propositions of  this 

section show that the concept " roundness"  is quite natural especially for Banach 

spaces. Let q > 1. 

PROPOSITION 4.1.1. I f  in a Banach space (1) holds with some exponent q 

for  all quadruples where aoo, aol, a11, aao are corners in a parallellogram with 

(aoo, a11) as one diagonal, then (1) holds with the exponent q for  all quadruples 

in the Banach space. 
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PROOF. It is enough to prove that if the inequality holds with aoo = 0, 

aol = ( x - y ) / 2 ,  all  = x  and alo = ( x  + y)/2, then it holds with a o o = 0 ,  

aol = x - y - b ,  all  = x and alo = x - b for every b, that is if  2.1I(x-y)/211 ~ 

+ 2 .  II(x + y)/2l[ q> ][xll q + ]ly[I q then [Ib{I q+ I [x -y -b l l  ~ + I lx -  bl[ ~ +tIY + bll ~ 
=> 11 x 11 ~ + 1l y I} q for  every b. If  r 1 and r z are positive real numbers and r l + r2 is 

assumed to be constant then r~ + r2 q attains its minimum when r 1 = r2. This and 

the triangle inequality gives that l i b ?  + II x - y - b 11 q attains its minimum when 

b = ( x - y ) / 2 .  For this, b, f i x - b  [[q+ [[y + b t[ ~ also attains its minimum. 

This proves the proposition. 

LEMMA. I f  r l , r2 , . . . , r  6 are positive real numbers and max(rl,r2,r3,r4) 

< max(rs,r6) and r~ + r~ + rq+ r4 ~= r~ + r~, then rE + r~+ r~+ rP< r~+ r~ 

if p > q .  

PROOF. We form d/dp(r~ + r~+ r~+ r ~ -  r ~ -  r~) = p- l ( r~  • logr~ + ... 

+ r~.  log r~ - r~ . log  r~ - r~ • log r~). If  a and b are positive real numbers 

and a + b is assumed to be constant then a .  log a + b .  log b increases with 

I a - b I. Thus it is enough to prove d/dp(p > q) < 0 when we have minimized 

r~ - l o g r~  + r~.  tog r~ under the assumptions that rg + r~ is constant and 

max(rl ,  r2,ra,r4) < max(rs,r6).  Thus it is enough to prove d/dp(p > q ) <  0 if 

max(rx, r2,  r3, r4) = max(rs,  r6)  o r  if max(r1, r 2, r 3, r4) < min(rs,  r6)  and both 

these cases are easy. 

PROPOSITION 4.1.2. I f  (1) holds with the exponent q for all quadruples in 

a Banach space, then (1) holds also with the exponent ql i f  I < ql < q. 

PROOF. Since in a Banach space the largest edge in a parallellogram is not 

larger than the largest diagonal the preceding lemma shows that (1) holds for all 

parallellograms with the exponent q~, 1 < q~ < q. And so Proposition 4.1.1 shows 

that (1) holds with the exponent q~ for all quadruples in the Banach space. 

REMARK. Proposition 4.1.2 is not true for general metric spaces which can be 

seen by the following example: 
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In this metric space we have 10,8 z + I z + I z + 9 2 < 10 2 + 10 2 but (1) holds 

with the exponent  q for  all quadruples (also for those quadruples  in which some 

points are equal)  if q is the smallest number  > 2 such that  10,8 q + i q + i q + 9 q 

= 10 q + 10 q. 

In the fol lowing chapters  the concepts  " roundness  > 1"  and "un i fo rm con- 

vexi ty"  will both  be of  importance and so we have to investigate if there is a 

simple connect ion between them. The fol lowing proposi t ions show that  there is 

no such simple connection.  We recall  that  a Banach space is said to be uniformly 

convex if there is a funct ion 6(~) > 0 for  ~ > 0 such that  [t x + y [[ < 2 .  (1 - 6(~)) 

when[Ix[{=<1,  [[ y i[ =< l ,  l[ x - y [[ >_- a. 

PROPOSITION 4.1.3. I f  in a Banach space B, the uni t  sphere o f  some two- 

d imens ional  subspace of  B has a corner, then B has roundness 1. 

PROOV. Let  C be the two-dimensional  subspace whose unit  sphere has a 

corner  x o. Let  x ,  and y,  be two sequences of  points on the unit sphere of  C which 

converge to x 0 f rom different sides and which satisfy I] x , -  x o 1] = 1] Y , -  x0 ]l" 

Consider the paral lel lograms with corners in x,,  y , , - x , , -  y ,  and with ( x . , - x , )  

as one diagonal.  In this paral le logram both diagonals have length 2 and since the 

unit  sphere has a corner  in xo we have II x .  + y .  I1 + K . .  tl x , . -  y .  II = 2. where K .  

is a sequence bounded away f rom 0. Since Ii x . -  y.  II-  0 as n ~ oe this equali ty 

gives that  if q > 1 then 2 l l  x ,  + y,  I] q + 2 ] l  x ,  - y ,  ]l q < 2 . 2  q, if n is sufficiently 

large. 

Proposi t ion 4.1.3 shows that  there exist uniformly convex Banach spaces which 

have roundness 1. I f  B is a Banach space, let PB denote  the roundness o f  B. 

PROPOSITION 4.1.4. I f  the boundary  o f  the uni t  sphere o f  a two-dimensional  

Banach space is a regular C2-curve , then p,~ > 1. 

PROOF. If  the boundary  of  the unit  sphere is a regular  C2-curve, then it is easy 

to verify that  x ~ It x 1[ is twice cont inuously  differentiable except at 0. Let x be a 

point  with 11 x II = 1 and consider a paral le l Iogram with corners in 0, x , x  + ty and ty 

where [I Y II = 1 Then I[ x + ty II = ~ + K i t  + o(t2) and II x - ty [[ = 1 - K l ' t  

+ 0(t 2) where 0(t 2) holds uniformly on II x II = 1 as t -~ 0 This gives that  if p~ = 1 

P" Xd~: and there exists a sequence of  non-degenerated paral le l lograms with ~ s , , ,  = 

(where s,,. denotes the lengths of  the edges and d~,, the lengths of  the diagonals) 

where p,  ~ 1 we must  have s . . . . .  < K • s , , , , ,  for all n and some K. We now assume 

that  there is such a sequence with s,,,,,~ < K • s,,m~, = 1. By choosing a convergent 
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subsequence we get a parallellogram with ~s~ = YAp. We can assume that the 

central point of this parallellogram is 0 and that the corners are x + y , x -  y,  

- x -  y and - x + y. We can also assume that II x + y H = 1. Since we have by 
assumption 4 [[ x II + 4 t[ y I[ = 2 I1 x + y II + 2 II x - y I1 and by the triangle in- 

quality [[ x ][ + ]l y l[ =>[]x+y[I and [ ] x ] [ + l ] y [ ] > ] [ x - y I [  we havel[x[[ +[ly[] 

= [[ x - y ][ = 1. Consider the line through y/[] y 11 and x + y. This line intersects 

the line through 0 and x at the point x/(X-I]Y[])" Now ]1 x/O-1] y ][)11-- 1 and so the 

linear segment which connects Y/l[ Y ][ and x / (1 - [ I  Y I])lies entirely on the boundary 

of the unit sphere. This gives that the boundary of the unit sphere is the boundary 

of a parallellogram and so it is not a regular C2-curve. This proves the proposition. 

Proposition 4.1.4 gives that a Banach space with roundness > 1 need not be 

uniformly convex. The proof of proposition 4.1.4 also gives the following propo- 

sition which shows that the class of Banach spaces with roundness > 1 is fairly 

large. The complication that we cannot find a convergent subsequence of parallello- 

grams in the second part of the proof is easy to handle. 

PROPOSITION 4.1.5. I f  in a Banach space B, x ~ l[ x I[ is twice cont inuously  

Frechet  di f ferent iable  in some set 0 < r 1 < x <-_ r2 and the second derivative is 

bounded in this set, then p~ > 1. 

In [2] it was proved that Lv(0,1), 1 < p < 2, has roundness p. 

We shall say that a set of 2 n points (not necessarily different) in a metric space is 

an n-dimensional cube, if the points are indexed by the 2 n n-vectors whose com- 

ponents are 0 and 1. We shall say that a pair of points in an n-dimensional cube 

is an edge if the indexes of the points are different in exactly one component. 

We shall say that a pair of points is an m-diagonal if m components of the indexes 

are different. The importance of the concept roundness in this paper depends 

heavily on the following theorem which was proved in [2] : In an n-dimensional 

cube in a metric space with roundness p we have n l i p  • Sma x ~> dml n where smax is the 

length of the largest edge and d,,~ is the length of the smallest n-diagonal. (2) 

The following theorem is the weaker counterpart of (2) for uniformly convex 

Banach spaces. 

THEOREM 4.1.6. I f  B is a un i fo rmly  convex Banach space, then f o r  every 

K > 1, there is a w, such that f o r  all  n and m with n /m > w and every n-d imen-  

sional  cube H~ in B there is an ml -d iagona l  in H~, ml  > m, with length 

< m l / K  • Sm.x. 

PROOF. The uniform convexity of B gives taat there exists a positive 6 with 
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the property that if the lengths of  the two diagonals in a quadruple are > 1 and 

> 1/K then there is an edge of length > (1 + 6)/2 in the quadruple. Let H ,  be an 

n-dimensional cube in B, n = 2 P. First consider the quadruple of  points where 

one diagonal dl 1 consists of the points aoo...o and a 11... 1 and the other diagonal d21 

consists of the points aoo...o 11...1 and a11...1 oo...o • I f d l l  and dzl have 

n/2 0:s  n/2 l :s  n/2 l : s  n/2 0:s 

both length > n/K'sm,x  then the length of some edge in this quadruple is 

> (n/2K)(1 + 6). We can_'assume that the length of (alx...1 oo...o , aoo...o) is 

n/2 l : s  n/2 0:s 

> (n /2K)( l+6) .  Now consider the quadruple of  points where one diagonal dlz 

consists of  the points a11...1 oo...o , aoo...o and the other diagonal d22 consists 

n/2 l :s n/2 0:s 

of  the points a11...1 oo...o , aoo...o 11...a oo...o . Now if d22 has 

n/4 l :s  3n/4 0:s n/4 0:s n/4 l : s  n/2 0:s 

lengt > n/2K'sm,~ then the length of the largest edge in this quadruple is 

(n/4K)(1 + fi)z. I f  n is sufficiently large we can continue this process r times where r 

is the smallest number such that (1 + 6) r > K. Some of  these times we will find an 

ml-diagonal  with length =< mi lK  • Sm.x for otherwise we would have an n/2" 

diagonal with length > (n/K • 2') • (1 + c5)' • s . . . .  which contradicts the triangle 

inequality. I f  n is not of  the form 2 p we can consider a 2P-dimensional subcube 

o f / / . ,  where p is the largest integer such that 2 p < n, and so the theorem is proved 

also for this case. 

5. Existence and largeness of  square roots in groups 

5.1. Existence and largeness of  square roots in Banach groups. We shall say 

that B is a commutative Banach group if (1) B is a Banach space, (2) there is 

defined on B an operation (x, y) - ,  xy which makes B a commutative topological 

group with 0 as unit element. We shall say that U is a commutative local Banach 

group if (1) U is an open neighbourhood of 0 in a Banach space, (2) there is 

defined on some open neighbourhood of 0 an operation (x, y)--> xy  which makes 

U a commutat ive local group with 0 as unit element. 

THEOREM 5.1.1. I f  in a commutative Banach group B l[x2y- xlyl[ 

= o(I I x 2 - x 1 ]l 1/pB) uniformly in Xl,X 2 and y as [l x2 - xl  I I "  0, then the set of 

elements of the form z = y2 is dense in B. 
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PROOF. Consider an element z ~ B, let n be an integer and form the elements 

Ym = (mz /n )  . ( (m -- 1 )z /n) -  a, 1 < m < n. Then YlY2"'" Y, = z. Now consider the 

set of 2" points which we get by forming all products 0 • Yk,Yk2 ""Ykj where in 

every product y~ appears once or not at all. This set becomes an n-dimensional 

cube if for every point in the set we let the m : th component  of  the n-vector 

be 1 if Ym appears in the product and 0 otherwise. In this cube we have 

Smax = max ]l Y~Yk,Yk2 "'" Ykj - Yk,Yk2 "'" Yk, [] 

vz ((v-1)z)-: (v-1)z 
= m a x  [[ n • "Yk,Yk2"'" Yk,--  ~n n Yk,Y~2"'" Y~,II 

=o(l[ z/n as o~ by assumption. I f  (bD, b) is an n-diagonal in this cube 

we have bD" b = z. And by (2) we have min ]l bD -- b II ---< n 1/v~,. s,,,~ = n T M  

o(11 z/n = o(llz as Thus rain H b2 - z  [1 = min II h .  b - bo" h II 
0 as n ~ oo. The theorem is proved. 

Of  course Theorem 5.1.1 is interesting only when p~ > 1. Now we shall say that a 

map T f rom a metric space into a metric space satisfies a first order Lipschitz con- 

dition for large distances if for every e > 0 there is a K such that d (T (xO ,  T(x2)) 

< K • d(x~, x2) if d(x~, x2) > e. It  is easy to see that a uniformly continuous map 

from a convex set in a Banach space into a metric space satisfies a first order 

Lipschitz condition for large distances. (3) 

In the following theorem we weaken the condition on the group operation to 

uniform continuity only. The theorem will be of  use to derive the results of  Chap- 

ter 6. 

THEOREM 5.1.2. I f  in a commutat ive  Banach group B, (1) p~ > 1, (2) ( x , y )  

--* xy  is un i formly  continuous, then we can introduce a group invariant  metric  

d~ in B such that (a) d~(x, y)  > I] x - y II for all x and y in B and d~ gives the 

same uni form structure on B as the norm: (b) there exist two constants Ka and K2 

such that fo r  every z G B  there exists a b G B  such that d ~ ( b 2 , z ) < K a  and 
I/pB 12. d A b ,  O) - d~(b',0) I < K z ( d , ( z , O ) )  . 

PROOF. We put d ' ( x , y ) = s u p H x z - y z l l .  Since the group multiplication is 
, > uniformly continuous, d '  is uniformly equivalent to the norm and d ( x , y ) =  

> [[ x - y [l" And d '  is a group invariant metric. Now choose a n ~  > 0 and let 

d~(x, y)  be the infimum of the lengths of  the e-chains between x and y in the metric 

d ' .  Then d, is group invariant and d, gives the same uniform structure on B as d ' .  

For d~(x, y)  = d'(x ,  y )  if d'(x,  y)  < e. We also have d,(x,  y )  > d'(x ,  y )  > H x -  y ]1. 
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And by (3) there is a K such that  II x - y I[ < d~(x, y) -5_ K .  I[ x - y [I if d~(x, y)  >= e. 

Thus (a) is proved.  Choose K such that  d~(x, y )  <= K e  if II x - y I] =< e. 

Let z be a point  in B and let 0 = Xo, xl,  " ' ,  x,  = z be an z-chain whose length is 

< d~(z,0) + ~. We form Ym = Xm " X7,1-1, then Y~Y2 "" Y, = z. We can assume that  

there is at most  o n e j  such that  d j y j ,  e) < e/2, otherwise by mult iplying together 

some of  the y~ : s we can obtain that  this is fulfilled. We thus have ne > d~(z,0) 

>_>_(n/2 - 2)e. In the same way as in the p r o o f  o f  Theorem 5.1.1 we now form the 

n-dimensional  cube with the 2" points 0 • YklY*2"'" Ykj. In the no rm metric we have 

s,..x <_-~ in this cube. Thus we have rain II b lo  - b111 <= n l / P " ' ~  in this cube and so 

mind~(b lD . ,b l )  < K • n 1/p~' • e. Since d~ is invariant and d~(z,O) < Zd~(y , . ,O)  

< d , (z ,O)  + e we have d, ( z ,O)  < d,(blD,0) + d , ( b l , 0 )  < d~(z,O) + e. Since 

d , ( b l , 0 )  - K . n t /p~ .  ~ <= d~(blo,  O) < d~(bl,0) + K • n 1lye.  e we have 

d ~ ( z , O ) - K "  n a/p~' • e < 2  • d ~ ( b l , 0 ) < d ~ ( z , O ) + ( K  • n l / P n +  l)e. (4) 

d(bZl,Z) = d~(blo, b l )  <= K " n l i p ' .  e. (5) 

Now we repeat the process above with z I = z • b ~  2 instead o f  z. Then we get 

n l e > _ d . ( z t , O ) > ( ( n l / 2 ) - 2 ) e .  And  we get an element b a which satisfies 

d(b22,zO < K "  nl/v~ • e, 2 • de(b2,0 ) --< de(z1 ,0  ) + ( K "  nt l /P°+ 1)e. A n d  then we 

repeat the process with z2 = z • b1-2. b 2  2. and so on. We flush the construct ions 

when we get to the first number  m such that  (n~/2 - 2)e < 2 • ( K  • n,."~/v~ + 1)e 

which certainly will occur. Since the reverse inequality holds for all sufficiently 

large n,.: s there is a cons tant  K 1 such that  K 1 > nine > d,(z , . ,O)  = d~(z • b-12 

. . . . .  b~. z ,0)  = d,(z ,  b 2 • b z . . . . .  bE). Since by (4) we have d~(bi, O ) < d~(z j_ t ,O) ,  

2 =<j < rn, we have d, (bzb3 ... b,,,O) < =2d~(bj, O < (zj ,  O)<(~ , '~ - z2  - j )  

• d~(z l ,0 )  < 2 • d~(za,O ). This last inequality and (4) give that  there is a constant  
2 2 2 K2 such tha t l2  • d , ( b ~ b 2 . . ,  b , , , O ) - d ~ ( b ~ b z . . ,  b,,,O)[ <= K 2 "  (d~(z,O)) ~/p" and 

thus b = blb2.., b,, satisfies the condit ions of  the theorem. 

Theorem 5.1.2 gives tha t  the group resembles a Banach space for  large distances. 

We get the 

COROLLARY. I f  a s u b g r o u p  G o f  a me t r ic  l inear  space is u n i f o r m l y  homeo-  

mor ph i c  to a B a n a c h  space wi th  roundnes s  > 1, then in G s u p ~ d ( z , M )  < oo 

where  M is the set o f  e l e m e n t s  o f  the f o r m  2y. 

PROOf. Let T : G ~ B be a uni form homeomorphism.  Then B with the g roup  

structure inducted by T becomes a Banach group which satisfies the condit ions 

o f  Theorem 5.1.2. Thus  in B sup~d(y, T ( M ) )  < oe in the no rm metric and since 
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T -  1 with respect to this metric satisfies a first order Lipschitz condition for large 

distances the corollary is proved. 

EXAMPLE 5.1.1. The following closed connected subgroup of  L2(0,1) is not  

uniformly homeomorphic to any Banach space with roundness > 1 (as a con- 

sequence of the corollary above). Let the group be the closed hull of the following 

set G : G  consists of the L2(0,1)-functions whose values on the interval 

(1/(n + 1), 1/n) are multiples of n 2 for every n > 1. 

If  G is a subgroup of the additive group of  some metric linear space and G is not 

a linear space, can G then be uniformly homeomorphic to a Banach space with 

roundness > 1? This question is of central importance in the further development 

of the theory. In view of Theorem 5.1.2 it seems natural to study subgroups of 

Banach spaces, i.e. the Example 5.2.1 of this paper. 

We now give the counterpart of Theorem 5.1.2 for uniformly convex Banach 

spaces. 

THEOREM 5.1.3. I f  in a commutat ive  Banach group B, (1) B is un i formly  

convex, (2) ( x , y ) ~  xy  is un i formly  continuous then we can introduce a group 

invariant  metric d~ in B such that, (a) d , ( x , y )  > II x - y II for all x and  y in B 

and d~ gives the same uni form structure on B as the the norm, ( b ) f o r  every 

6 > 0 there is an w such that f o r  every z with d~(z,O) > w there is a b E B  such 

that d~(bZ, z) < 6 .  (d~(z,O)) and 12.  d ~ ( b , O ) -  d~(b2,0) l < 6-  (d~(z,O)). 

PROOF. We define d~ in exactly the same way as in the proof  of Theorem 5.1.2. 

This gives (a). We then consider a z ~ B and let 0 = Xo, x~..., xn = z be an e-chain 

between 0 and z with length < d,(z,  0) + e. We form Y,n = x,, • x,~--l~ and as in the 

proof  of Theorem 5.1.2 we can assume that there is at most one m with d~(ym, O) 

< e/2. As in the proof of Theorem 5.1.2 we now form the n-dimensional cube 

with the 2 n points 0 • YklYk2"'" Yb" Now if K~ is an arbitrary real number and n is 

sufficiently large (how large depends on K1) then there is by Theorem 4.1.6 an 

ml-diagonal, m~ > m, in this cube with length < ml • e/K~ in the norm metric 

and thus with length ml  • e • K/K~ in the metric d s where K is the constant 

which appears in the proof  of Theorem 5.1.2. We assume that the points of this 

ml-diagonal can be written Y11Y~2 "'" Y~n, " x and Y2~Y22 "'" Y2n2 " x where 

n i + n 2 = m 1. Then d~(yitYt2 ""Ylnl,Y21Y22 ""Y2n2) < ml  " e • K / K i .  We put 

YllYl2 ""Ylnl = bll and Y21Y22""Y2n2 = b2. We consider z 1 = z • bit  1 • b i ' 2 1 .  

We can assume z~ = Y~Y2"'" Y(,,-ml~ otherwise we can renumber the y~ : s so that 
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this is the case. And  we form the (n - ml)-dimensional  cube which consists of  

the 2 "-m' elements 0 .  YklYk2"'" Yk i where kj __< n - m,1. N o w  if d~(z~,O) is suffi- 

ciently large also in the (n - ml)-dimensional  cube described above  we can find 

an m2-diagonal,  m2 > m, whose length in d~ is < ml " e • K / K  i . We form b21 and 

b22 in the same way as we formed hi1 and b12. We then consider z 2 = z t • b2~" b221 

and if d(z2,0 ) is sufficiently large we can repeat the process. We repeat the 

process so many  times that  there is no  more  m f d i a g o n a l ,  mj > m, with length 

< m i • e • K / K ~  in d~ in the cube we get. For  every 61 > 0 there is an wt such that  

if d~(z,O) > w i we have at this stage z = bllb21 ... bjl  • b12bE2 "'" bj2  • 2"j where 

d~(z~.,0)__< 61 • d~(z,0).And we have d~(bllb21 bjx,b~2b22 b j2)_-< d~(z,O). (3" e" K/K1) .  

By putt ing b = b~tb2~ ... bi~ we see that  the theorem is proved.  

I f  d,(z ,  b E) is sufficiently large we can make the same construct ion o f  a square 

roo t  o f  the element y = z • b -2  as we made when we constructed b f rom z an by 

repeating this approximat ion process o f  square roots  we obtain 

THEOREM 5.1.4. I f  in a commutat ive  Banach group B, (1) B is un i formly  

convex, ( 2 ) ( x , y ) - ~ x y  is un i formly  continuous then sup~d(x ,M)  < oo where M 

is the set of  e lement  of  the f o r m  y2. 

We also get the fol lowing corol lary  which we give a slightly more  general for- 

mulat ion than the corol lary o f  Theorem 5.1.2. 

COROLLARY. I f  a commuta t i ve  metr ic  group is un i fo rmly  homeomorphic  to 

a un i fo rmly  convex Banach  space then in the group s u p ~ d ( z , M )  < oo where M 

is the set o f  e lements  of  the f o r m  y 2 .  

The methods o f  construct ing square roots  described above give quite exact 

informat ion on the existence and largeness of  square roots  when we strengthen 

the condit ion on the group multiplication to satisfy local ly a first order  Lipschitz 

condition.  This is shown by the theorem below. 

THEOREM 5.1.5. I f  in a commuta t ive  local Banach group U (1) the Banach 

space is un i fo rmly  convex or has roundness > 1, (2)I1 x2y  - x i y  II <= K II x2 - x l  1[ 

f o r  all x i , x  2 and y in some neighbourhood of  0 f o r  some K ,  then we can introduce 

a group invariant  metr ic  dl  in some neighbourhood of  O such that (a) K ]1 x - y I] 

>= d 1 (x, y)  >= I] x - y ll f o r  all x and  y in some neighbourhood ofO (b) to every z in 

some neighbourhood o f  O and  every e > 0 we can f i n d  a b such that b 2 = z and 

Idl(z,O) - 2 .  dl(b,O)[ < e. 
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PROOF. We carry out the p r o o f  in detail only  for the case when p ,  > 1. I f  U 1 is 

a sufficiently small ne ighbourhood of  0 we can define d ' ( x , y )  = sup II x z  - y z  II 
which gives an invariant 6cart in U1. Then we cart define d~(x, y)  to  be the infimum 

of  the lengths in d '  o f  the arcs between x and y in U1. Then d~ is defined and  

gives an invariant  metric in some ne ighbourhood  U2 of  0. Then d~ satisfies (a) 

which we see by considering the arc between x and y which is the linear segment 

in the Banach space which connects  x and y. 

N o w  let z be an element sufficiently near 0, put  d~(z,O) = r. I f 6  is a positive real 

number  we can consider an arc between 0 and z with length < r + 6 and for  every 

integer n > 1 we can consider a sequence o f  points  0 = Xo, X~, x ,  = z on the arc 

such that  dl(xi,  xi+l) < (r + 6)/n for all i. Put y,, = x,, • x,~_11. For  every n we 

consider the n-dimensional  cube with the 2 n points  0 • Yk,Yk2"'" Ykj" In this cube 

the largest edge has length < (r + 6)In in the no rm metric and thus the smallest 

n-diagonal  (bl~, bl) has length < ((r + ~) • K • n alp )/n in d~ and this tends to 0 as 

n ~ 00. However,  to get a b with b 2 = z we have to repeat the process above with 

z • b~ -2. Then we can get a convergent  series bx, bab2, bxb2b3, "" which converges 

to  a b with b 2 = z. And  if e > 0 is given we can choose the length of  the first arc 

to be so near r and let the convergence to b be so fast that  I d (z,0) - 2 .  al(b,0) I 
< e. The p r o o f  in the case o f  a uniformly convex Banach space goes in the same 

way with obvious modifications. 

We shall say that two metric spaces are Lipschitz-equivalent if there is a one-to- 

one mapping  T :  Ba onto  B 2 such that  T and T -1 satisfy a first order Lipschitz 

condition.  We shall say that  two metric groups are locally Lipschitz-equivalent 

if some ne ighbourhood of  e in one o f  the groups is Lipschitz-equivalent to some 

ne ighbourhood o f  e in the other group.  Theorem 5.1.5 gives the 

COROLLARY. I f  a locally generated  subgroup G o f  some metr ic  l inear  space 

is locally Lipschi tz-equivalent  to a Banach space, which is un i fo rmly  convex or 

has roundness > 1, then G is a normable  topological l inear space. 

We think that  very little can be said about  the existence o f  square roots  in 

commutat ive  Banach groups without  some geometrical  condi t ion on the Banach 

space. However,  we give the fol lowing 

THEOREM 5.1.6. I f  in a commutat ive  Banach group ,[Ix2y-x~y][ < 

KI[ xz  - xx II where K < 2, then every e lement  o f  the group has a square root. 

PROOF Put d'(x, xo)= suP ll y x  - y x  o II. Then d' is a group invariant  metric 
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in B and K "II x - Xo II > d'(x,  Xo) > fl x - Xo I1" N o w  for  z e B we const ruct  a 

sequence y .  which converges to a square root  o f  z in the fol lowing way:  put  Yo = 0 

and  if y .  is defined put  y . + l  = ( y . +  z .  yn i ) ]2 .  Then we have  ][y.-zy.-+'l If 
d'(y, ,  Zyn+lX) = d ' ( y . + l ,  zy~ 1) = d ' ( ( y ,  + z "  y~ l ) / 2 ,  zy2  l) 

< K "  If (Y" + z y ;  i ) /2 - z y ; l l l  = K/2  II Y" - zY~-i]I (a) 

Also ][ zy ;  1 - zy;l+i 1] --< d' (zY;1 ,  ZYn+li) = d'(y, ,  Yn+i) =< K ' [ I  Y , - Y , + ,  [I 

= K/211 y ,  - z y ;  1 [l (b) 

(a)  and  (b )g ive  ]1 (y.  + zy~ 1 ) /2-zy~+l  i ]1 --< K/211 y , - -Zyn  ill that  is [I Y,+ l -  zY'~l+l II 

< K/211Y, - zY;a I]" This inequali ty immediate ly  gives y2 ~ z as n ~ oo. This  

inequali ty also gives that  y .  is a convergent  sequence for  [I Yn+2- -Y .+ I  1[ 

= 1/2 [I Yn+i -- zY21+t l[ < K / 2 "  1/211y.- z y :  1 I1- g/2ll Y,+l - Y,[]. 

We think that  Theorem 5.1.6 becomes false if we put  K = 2, but  we have not  

succeeded in construct ing a counter-example .  The  p rob l em of  construct ing a 

counter -example  is a par t  o f  P rob lem 6.1.1 of  the next chapter .  

5.2. Groups generated by arcs in Banach spaces. We shall say tha t  a con- 

t inuous  arc t ~ x(t),  x(0) = 0, 0 _< t < 1 in a Banach  space B generates  G if G is 

the smallest  closed subgroup  of  B which contains  {x(t)}. It  is wel l -known that  

every cont inuous  arc t ~ x(t),  x(0) = 0, 0 < t < 1, in a f ini te-dimensional  Banach  

space generates a linear subspace of  the Banach  space. The theorems and example  

be low give in format ion  abou t  the infini te-dimensional  case. 

THEOREM 5.2.1. I f  for  the arc t ~ x(t),  x(0) = 0, 0 < t < 1 II x(t2) - X(tl)l[ 

=o(l[t2-t~ll lImB) holds  as It2-t~l--,0 then t ~  x( t)  generates a linear sub- 

space of B. 

PROOF. I t  is sufficient to prove  that  in the g roup  generated by t ~ x(t)  there 

are elements  arbi t rar i ly  close to (x(t))/2 for  every t in [0,1] .  Consider  an X(to) and 

an n and fo rm the elements  Ym = x(mto/n) - x((m - l)to/n), 1 <_ m <_ n. Then 

Yl + Y2 + "'" + Y,, = x(to). We form the n-d imensional  cube fo rmed  by the 2" 

elements  0 + Yk, + Yk2 + "'" + Yb where in every sum Yv appears  once or not  

at  all. In  this cube we have by assumpt ion  Smax = o((1/n) 1/pB) as n ~ do and  thus 

d m ~ . - - m i n l [ b n - b l l  < s  .... • n 1/vB = o ( 1 ) a s  n ~  oo. Since bn + b = x ( t o ) t h i s  

gives that  there are elements  arbi t rar i ly  close to  X(to)/2 in the group  generated by  

t ~ x(t). The theorem is proved.  

EXAMPLE 5.2.1. For  1 < p < 2 consider the arc in Lp(0,1)  where x(t)  is the 

funct ion f ( y )  which is 1 on the interval  0 < y < t and  0 on the interval  t < y _< 1. 
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Then 11 x t2)- x(t~)]] = It 2 - t, l '/p and t ~  x(t)  does not generate a linear sub- 

space of Lv(O, 1). Since Lp(0,1), 1 < p < 2 has roundness p, the example shows 

that theorem 5.2.1 is in a sense the best possible. 

With an obvious modification of the proof we get 

THEOREM 5.2.1. I f  for  an arc t - ,  x(t) ,x(O) = O, O < t < 1, in a uni formly  

convex Banach space B, I [x( t2) -x( t l )  n < K . I t 2 - t l l  for  all t l , t 2e [0 ,1  ] 

and some K,  then t ~ x(t)  generates a linear subspace of  B. 

Theorem 5.2.1 suggests the problem if the following smallness property is 

characteristic for Banach spaces isomorphic to a Hilbert space: every arc t ~ x(t) ,  

x(0) = 0, 0 < t <  1, in the Banach space which satisfies It x(t2)- x(tl)ll 
= o ( I t  2 - t l l  1/2) as I t 2 -  ta I ~ 0  generates a linear subspace of the aanach 

space. 

6. Uniform homeomorphisms and isomorphisms between topological linear spaces 

6.1. In this chapter we turn from the more general metric commutative groups 

to metric linear spaces. One of the results of the chapter shows that a locally 

bounded linear space which is uniformly homeomorphic to a Hilbert space is iso- 

morphic to the Hilbert space. There are several reasons for considering questions 

of this type. First, in the corollary of Theorem 5.1.5 and in the theorems of 

Chapter 7 of this paper we will arrive at a situation where we have two metric 

linear spaces which are locally Lipschitz-equivalent or uniformly homeomorphic 

and so the question inevitably arises if they are isomorphic. Secondly, it is well- 

known that two finite-dimensional topological linear spaces which are locally 

homeomorphic are isomorphic and so it is natural to ask if there is some corre- 

sponding theorem for infinite-dimensional topological linear spaces. It has been 

proved by Kadec [14] that all separable Banach spaces are homeomorphic and 

in Mazur [15] it is proved that the Lp(O, D-spaces, 1 < p < 0% are locally uniformly 

homeomorphic and thus none of these conditions will imply linear isomorphism. 

In Lindenstrauss [7], Henkin [16] and Enflo [2] and [3] several examples of 

Banach spaces are given which are not uniformly homeomorphic and so uniform 

equivalence seems to be a natural condition. The problems just mentioned and 

also some other problems in the paper may all be regarded as special cases of the 

following general 

PROBLEM 6.1.1. To what extent is the following true: two connected uniform 

groups with the same underlying uniform space are isomorphic. 
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Problem 6.1.1 can also of  course be investigated with some Lipschitz condit ion 

or in the case of  non-commuta t ive  groups with some extra differentiability or  

analytici ty condit ion.  As a partial problem one can try to determine if a uni form 

group which is Lipschitz-equivalent to some appropr ia te  Banach space (in some 

two-sided invariant metric) is commutat ive.  

6.2. Locally bounded linear spaces and Banach spaces. 

THEOREM 6.2.1. I f  a locally bounded l inearspace i sun i formly  homeomorphic 

to a Banach space with roundness > 1, then it is a normable space 

PROOF. We begin with two lemmas. 

LEMMA 1. I f  d' is an invariant metric in a locally bounded linear space M,  

then there is a 6 > 0 such that, i f  a new metric d~ is introduced in M by letting 

d¢(x, y) be the infimum of  the lengths of the e-chains between x and y, 6 > e, then 

there are constants C and w such that d~(2b,0) >= C • d~(b,O) i f  d~(b,0) > w. 

PROOF. Let U be a bounded,  balanced ne ighbourhood  o f  0 in M, choose 6 such 

that d ' ( x ,O)<  6 ~ x e U and choose  e = 6. Then there is a K such that  x e U 

dr(x , O) < Ke. N o w  let z e M and let Xo, x~, ..., x ,  be an e-chain in d' between 0 

and z, with length < d~(z,O)+ e and such that  there is at mos t  one i with 

d'(xi, xi+ 0 < e/2. Then ( n / 2 -  2)e < d~(z,O) < he. N o w  since U is balanced 

Xo, X l / 2 , x2 /2 , . . . x J2  is a Ke-chain in d~ between 0 and z/2 and thus d~(z/2,0) 

< Kne. This proves the lemma. 

LEMMA 2. Let d' be an invariant metric in a locally bounded linear space 

and let d~ be defined as in Lemma 1 where e is chosen such that d'(x,O) < e 

x e U for  some bounded, balanced neighbourhood U of O. Then for  every 

6 > 0 and w > 0 there is a real N such that d,(x,O) > 6 ~ d(ax, O) > w ifct > N. 

PROOF. Since U 1 = {x ld ' (x ,O)  < e} is bounded  the family o f  sets l i t .  U1, 

t > 0 forms a fundamenta l  system of  ne ighbourhoods  o f  0. Thus l i t .  U I 

+ l i t  " U 1 c U1 for  some t > 0 and so U1 + U~ ~ tun.  The last inclusion gives 

U ~ + U ~ ÷ U ~ + U x c t U x + t U a c t z u ~  and so by induct ion we have 

U~ + U~ + ... + UI(2"U~ : s) ~ t" • U1. On the left side in the last inclusion we 

have all points o f  M at distance < 2" • e f rom 0. N o w  if for  some m > 0 we have 

x ~ . m U  then axe. t" • U~ if a > t"/m and so d~(ax, O) > 2" • e in this case. Since 

the family o f  sets m • U, m > 0, forms a fundamenta l  system o f  ne ighbourhoods  

o f  0 the lemma is proved. 
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PROOF OF THEOREM 6.2.1. Let T be a uniform homeomorphism from the 

locally bounded linear space M onto the Banach space B. Then B with the group 

structure induced by T satisfies the conditions of Theorem 5.1.2. Thus we introduce 

first an invariant metric d'  in M and then we introduce an invariant metric d, in 

M by letting d,(x, y) be the infimum of the lengths of the e-chains between 

When in the Proof  of 5.1.2 we define d,(x ,y)  we can choose e to be an arbitrary 

positive number and now we choose it so small that the e-sphere around 0 in d'  is 

contained in a bounded, balanced neighbourhood of 0. Now Theorem 5.1.2 gives 

that there are numbers K1 and K2 such that for every z ~ M there is an element 

of the form 2b at d,-distance < K 1  from z and with 12"d , (b ,O) - -d , (2  b,0)[ 

< K2 • (d,(z, 0)) 1/pB . The continuity property of x ~ x/2 proved in Lemma 1 now 

gives that there exists a constant K 3 such that 12. d , ( z / 2 , 0 ) - d , ( z , 0 ) ]  

<= K 3 • (d,(z,O)) 1/pB for every z ~ M. We define d,(x,O) = lim,_~o~ (d,(txl,0))/t .  

Then d.(x + y,O) < d.(x,O) + d.(y,O) a n d  d.(=x,O) = I 1 do(x,O) for real c~ : s. 

Thus d, defines a seminorm on M. We have obviously d,(x,O)< d,(x,O) and 

Lemma 2 and the inequality 12. d (z/2, O) - d,(z, O) l < K3 " (d~(z, 0)) 5/p~'give that 

d, defines a norm on M which gives the same topolgy as d,. The theorem is proved. 

As a consequence of Theorem 6.2.1 we see that L r (0,1) is not uniformly homeo- 

morphic to Lq(0,1) if 0 < p < 1, 1 < q < oe. 

THEOREM 6.2.2. I f  a locally bounded linear space is uniformly homeo- 

morphic to a uniformly convex Banach space, then an invariant metric de can 

be introduced in it such that limn_,oo(d,(2nx, O))/(d,(nx, O)) = 2 , foral l  x and the 

convergence is uniform in the set set Ua = (x [d,(x,0) > 8} for every (~. 

The proof  of this goes in the same way as the proof  of Theorem 6.2.1 but since 

Theorem 5.1.3 is weaker than Theorem 5.1.2 we cannot successfully introduce 

the metric dn in this case. 

6.3. Spaces unifarmly hameomarphic to a Hilbert space 

THEOREM 6.3.1. I f  a Banach space is uniformly homeomorphic to a Hilbert 

space, then it is isomorphic to the Hilbert space. 

PROOF. The theorem follows from the lemmas below. If  T is a Lipschitz map 

between teo metric spaces then we put 11 T II = sup(d(T(x), T(y)))/(d(x,y)).  If  X 

and Y are metric spaces we shall say that X is Lipschitz embeddable in Y if X is 

Lipschitz-equivalent to some subset of  Y. We say that the map T which gives 

the Lipschitz-equivalence between X and a subset of Y is a Lipschitz embedding 
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of X in Y. Our first lemma is a generalisation of a well-known theorem on iso- 

metric embeddings in Hilbert space. 

LEMMA 1. I f  X is a separable metric space, then there exists a Lipschitz 

embedding T of X in Hilbert space with 11 T 1[ ]1 T-1]] <= K if and only if for 

every finite subset M of X there is a Lipschitz embedding Tu of M in Hilbert 

space such that n TM II II z lll = g 

PROOF. Let {a,} be a sequence such that {a~} is dense in X and let the Hilbert 

space be represented as 12 (i.e. the space of real square-summable number sequen- 

ces). Now suppose that every finite subset M of X is Lipschitz embeddable in 

Hilbert space such thaat II TM II II TEl II < K. Let M,  be {a, t ,1  =< ~ __< n} and le t 

E, be the n-dimensional subspace of 12 which has the property that all numbers 

after the n : th in all sequences of E, are 0. For all M,  and all ar we can choose TM. 

in such a way that T~t.(%)eE v such that TM.(a~) = 0 for all n and such that 

II TMo II " 1  for all n We can find a sequence of positive integers n, such that 

T~t,(a2) converges for this sequence and then we can find a subsequence of {n~} 

such that Tu,(as)  converges for this subsequence. By repeating this process for 

every a~ and then finally choose a diagonal subsequence we obtain that for this 

diagonal subsequence TM,(aj) converges for all aj. The limit gives an embedding 

r of {at} with the required properties and since {a~} is dense in X it can be ex- 

tended to an embedding of all X in Hilbert space such that I[ Z II II r - i l l  K. 

The lemma is proved. 

LEMMA 2. I f  a Banach space B is uniformly homeomorphic to a Hilbert space 

then there is a K such that for every finite-dimensional subspace C of B there is 

a Lipschitz embedding T of C in Hilbert space with ][ Tll [I T-1II--< K. 

PROOF. Let T be a uniform homeomorphism from B onto the Hilbert space. 

Then T and T -  ~ both satisfy a Lipschitz condition for large distances say with 

the Lipschitz constants K~ and K2. Let M be a finite subset of  C. Then by mul- 

tiplying all vectors in M by a number n we get a set nM. If n is sufficiently large 

then there is a Lipschitz embedding T,u of nM in Hilbert space such that 

II Znu ]1 [] Zn-ul [I =< K l"  K2, namely the Lipschitz embedding defined by the uniform 

homeororphism. Thus there is a Lipschitz embedding T u of M in Hilbert space 

such that [] Tu [] II r ; ?  [I =< g l K 2  Now Lemma 1 applies to C and so Lemma 2 

is proved. 
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LEMMA 3. I f  t ~ x(t) f r o m  [0, 1] into Hilbert  space satisfies a f irs t  order 

Lipschi tz  condition then it has a derivative fo r  almost  all  t. 

PROOF. We can assume tha t  the Hi lber t  space is separable.  We represent  it as 

12 and consider t ~  (xl(t) ,x2(t) ,  ...). Then for  a lmos t  all  t, x~(t)exists for  every j .  

This holds  since for  every j ,  t ~ xj(t) satisfies a first order Lipschitz condit ion.  

I f  for  some to, x~(to) exists for  all  j ,  then (x',(to),X'z(to), ...) is an element  of  12, 

otherwise t ~ x(t) would  not  satisfy a first order Lipschitz condit ion.  However ,  

(x~(to),X'z(to),...) is the derivat ive of  t ~ x ( t )  at to if  and  on ly  if as t ~  to and 

j ~ oo we have ll (0, 0, . . . ,  0, x j ( t ) ,  xJ+ l ( t ) ,  .. .) - (0,0, ,O,x/ to) ,Xj+,(to) . . . )[[  

= o([ t -- to [). The  set o f  t : s where this does not  hold  is obviously  measurab le  and 

we assume tha t  it has posit ive measure.  Then,  since for  every & > 0, t ~ xj(t)  is 

cont inuous  in a set o f  measure  > 1 - ~ we have a set M of  t : s with the following 

propert ies :  (a) M has positive measure,  (b) for  every j ,  xj(t)  exists for  all  t in M 

and x~(t) is cont inuous  in M,  (c) there is an ~ > 0 such that  for  all  to in M and all  

7 > 0 and w > 0 there are t and j ,  [ t - to ] < ~, j > w such that  

II (o, o, . . ,  0, x / t ) ,x ,+  X(t), "")  -- (0, 0, "",  O, Xj(Io),Xj+ l(t0), "")[I >'~ I t -- to l" 

N o w  choose a to, to e M,  such tha t  the average density of  M at t o is 1. We consider 

an interval  to the right o f  to, an integer j l ,  and  a tl in this interval  such that  for  

some Na 

II (0, 0 , ,  0, x , ,  + 1(tl), ..., X N I ( t l )  , 0, 0,...) 

- (o, o, ..., O, xj ,( to),X~, + ,(to), ..., xN,(to), o, o, ...)l] > ~  I t ,  - to ] 

Here we can first choose j~ arbi t rarar i ly  large and then tl arbi t rar i ly  near  to. 

N o w  since the average  density of  M at  to is 1 and  since 

(0, 0," ' ,  O, Xjt,(t), X;, + l(t) ,  "",  Xk,(t),  0, 0, '"  ") 

is cont inuous  in M,  if I t l  - to I is sufficiently smal l  then we must  have 

? r t 0 II (0,0, ,xNl (0 ,0 ,  , ) I I  

in a set M t o f  posit ive measure ,  M 1 c ( M - . - [ t o ,  ta]). N o w  we can repeat  the 

process  above  with M~ instead of  M.  Since we could  choose j~ arbi t rar i ly  large 

we choose this t ime j2 > N t  and so we find a set M2 of  positive measure,  M2 c M1, 

such tha t  

[I (0,0, ,0, ' . . . . . .  0 = ~ x / 2  xj,(t), xj ,  +,(t), , xN,(t),O, 0, , 0, xj2(t), Xj2 + 1(0, , xN2(t), , " "  [[ > 



Vol. 8, 1970 U N I F O R M  STRUCTURES IN GROUPS. II. 269 

in M2. By repeating the process sufficiently large number of times we get a contra- 

diction to the fact that t -0  x(t) satisfies a first order Lipschitz condition. The 

lemma is proved. 

In the next two lemmas we will consider finite-dimensional Banach spaces. 

LEMMA 4. If, for an n-dimensional Banach space B, there is a Lipschitz 

embedding Tin, 0 < m < n, of B into Hilbert space such that (a) Tm is linear on 

some m-dimensional subspace Cm of B and T,, is linear on every (m + 1)-dimen- 

sional subspace of B which contains Cm 

(b) II rm II 11 r--1 II--< K 
then there is a Lipschitz-embedding of B into Hilbert space such that (al) Tm+l 

is linear on some (m + D-dimensional subspace Cm+l of B and T,~+ I is linear 

on every (m + 2)-dimensional subspace of B which contains Cm+l 

(bl) 1] Tm+l ]l ]] -1 

PROOF. Let N be a countable set of points on the boundary of the unit sphere 

of B such that N is dense on the boundary of the unit sphere. It follows from 

Lemma 3 that for almost all x in B, Tm has a derivative in all directions of  vectors 

of N at x. Let x be such a point, x ¢Cm. If  Tm has a derivative Tm,'a in the direction 

on the vector a at x, we put T,,+ l(x + va) = Tin(x) + v " T~a for real v : s. This 

defines Tin+ ~ on a dense subset of B. We have on this dense subset 

Tm+l(x + vial)  - Tm+t(x + v2a2) = lim Tm(x + rvlal) -- Tm(X + rv2a2) 
r ~ O  r 

This equation gives that Tm+ 1 can be extended by continuity to all of  B such that 

]1 Tm+l [] ][ Tm+l n < K. We assume that this is done. We have 

T 'a+x = lira T~(x + r(x + a)) - Tm(x + rx) 
r ~ O  r 

+ lim Tm(X + rx) - Tin(x) = T.,a + Tin(x), 
r_o O r 

since Tm is assured to be homogeneous. In this equation the existence of either 

side implies the existence of the other. And if %¢ Cm  we have 

T',a+c m = lim Tm(x + r(a + %)) - Tm(x) 
r ~ O  r 

= lira Tm(rC,n) + T,n(X + ra) - T,n(X) = Tm,a + Trn(C,n). 
r ~ O  r 
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The second last equality holds since T,, is linear on every (m + 1)-dimensional 

subspace of B which contains Cm. Now let Cm+l be the (m + 1)-dimensional 

subspace of B generated by C,, and x. And let Din+ 2 be an (m + 2)-dimensional 

subspace of B generated by C,,+1 and an element a, a ~ N. Then we have 

T,,+l(tx + c,, + va) = T , , + l ( x - ( 1 -  t)x + c,, + va) = T i n ( x ) - T , , ( 1 -  t)x 

+ Tm(cm)) + v" T',,a = T,,(tx) + T,.(cm) + v .  T',a. This shows that T,,+I is linear 

on Din+2 and since N is dense on the boundary of the unit sphere in B, Tm+~ is 

linear on every (m + 2)-dimensional subspace of B which contains C,,+1. The 

lemma is proved. 

LEMMA 4. I f  for an n-dimensional Banach space B there exists a Lipschitz- 

embedding T of B into Hilbert space such that I1 r II II z- ll Z g then there 

exists an isomorphism V from B onto Euclidean n-space such that II VII II V-x II 

< K .  

PROOF. By considering a point x where T has a derivative in all directions of 

N (defined in the preceding lemma) we get a homogenuous embedding of B into 

Hilbert space with ]] To 11 II Zolll---< g by defining 

To(Y) = lira T(x + ry) - T(x)  
r-~O r 

if T has a derivative in the direction of y at x. We extend To by continuity to all 

of B. Then the conditions of Lemma 4 are satisfied with m = 0. By applying 

Lemma 4 n - 1 times and putting T,_ 1 = V we get the desired isomorphism. 

PROOF OF THEOREM 6.3.1. We now apply the following theorem by Dvo- 

retsky [17] : A Banach space is isomorphic to a Hilbert space if and only if there 

is a real number K such that for every n and any two n-dimensional subspaces B1 

and B2 of B there is an isomorphism V: B 1 --+ B z with II VII II v- l  I[ _-_ K. If  a 

Banach space is uniformly homeomorphic to a Hilbert space then Lemma 2 and 

Lemma 5 show that the conditions of Dvoretsky's theorem are satisfied and so the 

Banach space is isomorphic to a Hilbert space. The theorem is proved. 

Theorem 6.2.1 and Theorem 6.3.1 give, since a Hilbert space has roundness 2 

THEOREM 6.3.2. I f  a locally bounded linear space is uniformly homeomorphic 

to a Hilbert space, then it is isomorphic to the Hilbert space. 

Since in the proofs of Lemma 4 and Lemma 5 above we could equally well 

work with local embeddings, these lemmas and the conclusion of the proof of 

Theorem 6.3.1 give 



Vol. 8, 1 9 7 0  UNIFORM STRUCTURES IN GROUPS. II. 271 

THEOREM 6.3.3. I r a  Banach space is locally Lipschitz  Iembeddable a Hilbert  

space, then it is isomorphic to a Hilbert  space. 

Theofem 6.3.1 and the corollary of Theorem 5.1.5 give 

THEOREM 6.3.4. I f  a connected subgroup G of  a metric linear space is locally 

Lipschitz equivalent to a Hilbert  space, then G is a linear space which is iso- 

morphic to the Hilbert  space. 

We think that Theorem 6.3.3 becomes wrong if "locally Lipschitz embeddable" 

is changed to "uniformly embeddable". Theorem 6.3.4 becomes wrong if "locally 

Lipschitz equivalent" is changed to "Lipschitz embeddable in"  as is shown by 

Example 5.2.1, and we think that it remains false even if we assume that G is a 

metric linear space. 

The technique of Lemma 4 easily proves that if there is a local Lipschitz homeo- 

morphism T between two finite-dimensional Banach spaces such that IIT II II T - ' t l  

< K then there is an isomorphism V between the spaces with [I V ][ ][ V- ' l [  < K. 

This result follows also directly from a theorem of Rademacher, which says that 

a Lipschitz mapping from R o to R is differentiable almost everywhere. However, 

the technique of Lemma 4 seems to be useful also when constructing isomorphisms 

between infinite-dimensional Banach spaces assumed to be Lipschitz equivalent 

but we have not worked out any details. 

7. Structure theorems for commutative Banach groups 

7.1. In this chapter we combine results from earlier sections to get some 

results on the structure of commutative groups. We have 

THEOREM 7.1.1. I f  for  a commutative Banach group B with p s >  1, 

(a) I[(x2y -- x l y ) l  I = o ( l l x 2 -  x l  II"PS)uniformly in x , , x2  and y as [Ix2-xl l ]~0,  

(b) the group is uni formly dissipative, then the group is isomorphic to a Banach 

space, and i f  B is a Hilbert  space the group is isomorphic to B. 

PROOF. Theorem 5.1.l gives that the set of elements of the form y2 is dense 

n B. Then Theorem 2.2.3 gives that the group is locally bounded linear space 

and then Theorem 6.2.1 and Theorem 6.3.1 complete the proof. 

THEOREM 7.1.2. I f  for  a commutative local Banach group U, where the 

Banach space B is uni formly convex or has roundness > 1 (a)II  x = y - x l y  11 
< K I I x 2 - x a l l  for  all x l , x  2 and y in some neighbourhood of 0 for  some K, 

(b) there is a neighbourhood V of 0 such that x ~ V, y ~ V and x 2 = y2 ~ x = y, 
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then the group is a local Banach space and i f  B is a Hi lber t  space then the 

group is a local Hi lber t  space. 

PROOF. Since we have assumed uniqueness  o f  square roo t s  we get when 

app ly ing  T h e o r e m  5.1.5 square roo t s  on exact ly  h a l f  the d is tance  to  0. Theorem 

2.3.2 then  shows tha t  the g roup  is a loca l  Banach  space and  Theorem 6.3.1 gives 

the case when B is a Hi lbe r t  space. 

I t  is a na tu ra l  quest ion whether  the cond i t ion  (b) in Theorem 7.1.2 can be 

removed.  
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