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ABSTRACT

Commutative groups uniformly homeomorphic to certain Banach spaces
are considered. Results on the relation between the structure of the topological
group and the Banach space are obtained.

In this part of the paper we turn from the abstract approach to Hilbert’s fifth
problem to a more concrete approach and so we first give some necessary geo-
metrical results.

4. Roundness and uniform convexity

4.1. We recall a definition from Enflo [2]: A metric space is said to have
roundness p if p is the supremum of the set of g : s with the property: for every
quadruple of points agg, apy, 11,010 We have

[d(aoo,am)]q + [d(aop,a1)]* + [d(asr,a10)]* + [d(alo,“oo)]q

= [d(ago.a1)]* + [d(ao1,a10)]".
The triangle inequality shows that (1) is always satisfied for ¢ = 1. If the metric

M

space has the property that some pair of points has a metric middle point then (1)
is not satisfied for all quadruples if g > 2. We see this by choosing aq, to be the
middle point between a4, and a,, and putting a,, = a,,. The propositions of this
section show that the concept ‘‘roundness’” is quite natural especially for Banach
spaces. Let g > 1.

ProrosiTiON 4.1.1. If in a Banach space (1) holds with some exponent g
for all quadruples where aqg,dgq,0,1,019 are corners in a parallellogram with
(agg,a11) as one diagonal, then (1) holds with the exponent q for all quadruples
in the Banach space.
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Proor. It is enough to prove that if the inequality holds with ayq = O,
ao; = (x—¥)/2, ay;y = x and a5 = (x + y)/2, then it holds with gy = 0,
agy = x—y—>b, ay; = x and a,o = x — b for every b, that is if 2 | (x—y)/2 |*
+2- G+ 2]t 2 x|+ ] then [[b] “+ [x—y=b[ + [x = b] + |y + 5]
= ” x ”" + H y ““ for every b. If r, and r, are positive real numbers and r, + r, is

assumed to be constant then r{+ r;’ attains its minimum when r, = r,. This and
the triangle inequality gives that | b|? + | x — y — b | attains its minimum when
b=(x—y)/2. For this, b, [|[x—b["+|y+b|* also attains its minimum.
This proves the proposition.

LEMMA. If ry,ry,+,F¢ are positive real numbers and max(ry,7y,73,74)
< max(rs,rg) and ri+ri+ri+ri=ri+rd then ri+ri+rf+ri<ri+r
if p>4q.

ProoF. We form d/dp(rP+rf+rl+rE—rP—1D)=p ' (5 - logr] + -
+7rE-logrl —rl-logrf —rk -logrf). If a and b are positive real numbers
and a + b is assumed to be constant then a -loga + b - logh increases with
|a - b|. Thus it is enough to prove d/dp(p = q) < 0 when we have minimized
r2 - logrl + r2 - logrd under the assumptions that r§ 4 r§ is constant and
max(ry, 72,73, ry) < max(rs,rg). Thus it is enough to prove d/dp(p = q) <0 if
max(ry, 7y, F3, rq) = max(rs,rg) or if max(ry,r,,rs,ry) <min(rs,rg) and both
these cases are easy.

ProposITION 4.1.2. If (1) holds with the exponent q for all quadruples in
a Banach space, then (1) holds also with the exponent q, if 1 £ q, = 4.

PrROOF. Since in a Banach space the largest edge in a parallellogram is not
larger than the largest diagonal the preceding lemma shows that (1) holds for all
parallellograms with the exponent q,, 1 £ g, < ¢. And so Proposition 4.1.1 shows
that (1) holds with the exponent g, for all quadruples in the Banach space.

REMARK. Proposition 4.1.2 is not true for general metric spaces which can be

seen by the following example:
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In this metric space we have 10,82 + 12 4+ 12 4+ 92 < 10? + 102 but (1) holds
with the exponent g for all quadruples (also for those quadruples in which some
points are equal) if ¢ is the smallest number > 2 such that 10,8% + 17+ 17 + 94
= 10% 4 10%

In the following chapters the concepts “‘roundness > 1’ and “‘uniform con-
vexity’’ will both be of importance and so we have to investigate if there is a
simple connection between them. The following propositions show that there is
no such simple connection. We recall that a Banach space is said to be uniformly
convex if there is a function 6(g) > 0 for ¢ > 0 such that H xX+y “ £2-(1-46()
when | x| 51, || <1,

ProrosiTiON 4.1.3. If in a Banach space B, the unit sphere of some two-

dimensional subspace of B has a corner, then B has roundness 1.

x—yuga.

Proor. Let C be the two-dimensional subspace whose unit sphere has a
corner x,. Let x, and y, be two sequences of points on the unit sphere of C which

Yn — Xo H .
Consider the parallellograms with corners in x,, y,,—x,, —y, and with (x,, —x,)

converge to x, from different sides and which satisfy H X, — Xo H = f

as one diagonal. In this parallelogram both diagonals have length 2 and since the
unit sphere has a corner in x, we have H Xy + Va H +K, - H Xy — Va H =2, where K,
is a sequence bounded away from 0. Since H Xy — y,,!

— 0 as n — oo this equality
gives thatif ¢ > 1 then 2 - || x, + y, |+ 2 - | x, — y, |* <2 2%, if n is sufficiently
large.

Proposition 4.1.3 shows that there exist uniformly convex Banach spaces which
have roundness 1. If B is a Banach space, let p, denote the roundness of B.

ProrosiTioN 4.1.4. If the boundary of the unit sphere of a two-dimensional

Banach space is a regular C,-curve, then p, > 1.

Proor. If the boundary of the unit sphere is a regular C,-curve, then it is easy
to verify that x — H X ” is twice continuously differentiable except at 0. Let x be a
point with “ X H = 1 and consider a parallellogram with cornersin 0, x,x + tyand ty
where “yH = 1. Then Hx+ty“ =1+K, t+0(t*) and Hx—ty =1-K;-t
+ 0(t?) where 0(t%) holds uniformly on H X “ =1 as t— 0. This gives that if p, = 1
and there exists a sequence of non-degenerated parallellograms with Xs&, = Xdf
(where s, , denotes the lengths of the edges and d; , the lengths of the diagonals)

where p, — 1 we must have s, p.e £ K * 5, i, for all n and some K. We now assume

that there is such a sequence with s, ,,x < K * 5, ;s = 1. By choosing a convergent



256 P. ENFLO Israel J. Math.,

subsequence we get a parallellogram with Xs, = X.d;. We can assume that the
central point of this parallellogram is O and that the corners are x + y,x — y,
—x—yand — x + y. We can also assume that H x+y H = 1. Since we have by
assumption 4 | x | +4 ||y | =2|x+y| + 2] x—y | and by the triangle in-
quality ] + [y 2 [x+v] and [ 2] + ] 2 [x =] we bave |x[ + ]
= || xX—y ][ = 1. Consider the line through y/ H y H and x + y. This line intersects
the line through 0 and x at the point x/(1— “y”) Now H x/(1— || y |[)|| =1 and so the
linear segment which connects y/|| y | and x/(1— || y |) lies entirely on the boundary
of the unit sphere. This gives that the boundary of the unit sphere is the boundary
of a parallellogram and so it is not a regular C,-curve. This proves the proposition.

Proposition 4.1.4 gives that a Banach space with roundness > 1 need not be
uniformly convex. The proof of proposition 4.1.4 also gives the following propo-
sition which shows that the class of Banach spaces with roundness > 1 is fairly
large. The complication that we cannot find a convergent subsequence of parallello-
grams in the second part of the proof is easy to handle.

ProrposiTioN 4.1.5. If in a Banach space B, x — Hx” is twice continuously
Frechet differentiable in some set 0 <r, £ x = r, and the second derivative is
bounded in this set, then p, > 1.

In [2] it was proved that L(0,1), 1 <p <2, has roundness p.

We shall say that a set of 2" points (not necessarily different) in a metric space is
an n-dimensional cube, if the points are indexed by the 2" n-vectors whose com-
ponents are 0 and 1. We shall say that a pair of points in an n-dimensional cube
is an edge if the indexes of the points are different in exactly one component,
We shall say that a pair of points is an m-diagonal if m components of the indexes
are different. The importance of the concept roundness in this paper depends
heavily on the following theorem which was proved in [2]: In an n-dimensional
Up.g =d

max = Ymin

cube in a metric space with roundness p we have n where s,,,, is the
length of the largest edge and d,,;, is the length of the smallest n-diagonal.  (2)
The following theorem is the weaker counterpart of (2) for uniformly convex

Banach spaces.

THEOREM 4.1.6. If B is a uniformly convex Banach space, then for every
K > 1, there is a w, such that for all n and m with njm > w and every n-dimen-
sional cube H, in B there is an my-diagonal in H,, m = m, with length
S my/K " Spax-

ProOOF. The uniform convexity of B gives taat there exists a positive ¢ with
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the property that if the lengths of the two diagonals in a quadruple are > 1 and
>1/K then there is an edge of length > (1 + J)/2in the quadruple. Let H, be an
n-dimensional cube in B, n = 27?. First consider the quadruple of points where
one diagonal d,{ consists of the points a4, and a,_, and the other diagonal d,,

consists of the points age o ;1.1 and a3 go.0. Ifdy; and d,, have

—— e e S

nf2 0:s nf2 L:s nf2 1:s nj2 O:s
both length > n/K - s,,, then the length of some edge in this quadruple is
> (n/2K)(1 + 6). We canlassume that the length of (ay; 4 0.6, @ao._ o) I8

N—— S

nj2 1:s nf2 0:s
> (n/2K)(146). Now consider the quadruple of points where one diagonal d,,
consists of the points a,;.; 0.0 > 0.0 and the other diagonal d,, consists

—— —

nf2 1:5s n/2 O:s

of the points a4 00..0 > do0..0 11...1 0o..0 - Now if d,, has

nfd1l:s 3nf4 O:s nfd Ois nfd1:is nf2 O

lengt > n/2K - 5, then the length of the largest edge in this quadruple is
(n/AK)(1+ 6)2. 1f n is sufficiently large we can continue this process r times where r
is the smallest number such that (1 + 6)" > K. Some of these times we will find an
m;-diagonal with length <m,/K - s,,. for otherwise we would have an nj2"
diagonal with length > (n/K - 2") - (1 + 6)" * $,,.x, Which contradicts the triangle
inequality. If n is not of the form 27 we can consider a 2°-dimensional subcube
of H,, where p is the largest integer such that 27 < n, and so the theorem is proved
also for this case.

5. Existence and largeness of square roots in groups

5.1. Existence and largeness of square roots in Banach groups. We shall say
that B is a commutative Banach group if (1) B is a Banach space, (2) there is
defined on B an operation (x, y) — xy which makes B a commutative topological
group with 0 as unit element. We shall say that U is a commutative local Banach
group if (1) U is an open neighbourhood of 0 in a Banach space, (2) there is
defined on some open neighbourhood of 0 an operation (x, y) —» xy which makes
U a commutative local group with 0 as unit element.

THEOREM J5.1.1.  If in a commutative Banach group B ” X2y — X1y ”
= o(” X — Xy [|/72) uniformly in xy,x, and y as “ Xy — X4 “ — 0, then the set of
elements of the form z = y? is dense in B.
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Proor. Consider an element z € B, let n be an integer and form the elements
Y = (mz/n) - ((m—=1z/n)"*, 1 <m < n. Then y,y, -y, = z. Now consider the
set of 2" points which we get by forming all products O - y;, yy, --- ¥, where in
every product y, appears once or not at all. This set becomes an n-dimensional
cube if for every point in the set we let the m: th component of the n-vector
be 1 if y, appears in the product and O otherwise. In this cube we have

Smax = MAX || oYk, Viy Ve, = Yo Vio o Vi, |

vz ((v—1z\! v=-1Dz [(~-1Dz\?
mmax |2 (O g = D2 (LD T

=0o(| z/n| /®) as n - oo by assumption. If (b, b) is an n-diagonal in this cube
we have by b=1z. And by (2) we have min H bp—b H <nllemg =nllPs.
o(] z/n|"'"®) = o(|| z || */**) as n—> co. Thus min | b> — z | =min| b - b — by b

— 0 as n - 0. The theorem is proved.

Of course Theorem 5.1.1 is interesting only when p_>1. Now we shall say that a
map T from a metric space into a metric space satisfies a first order Lipschitz con-
dition for large distances if for every ¢ > O there is a K such that d(T(x,), T(x,))
£ K - d(xy,x,)if d(x,,x,) = e It is easy to see that a uniformly continuous map
from a convex set in a Banach space into a metric space satisfies a first order
Lipschitz condition for large distances. 3)

In the following theorem we weaken the condition on the group operation to
uniform continuity only. The theorem will be of use to derive the results of Chap-
ter 6.

THEOREM 5.1.2. If in a commutative Banach group B, (1) p,>1, (2) (x,y)
— xy is uniformly continuous, then we can introduce a group invariant metric
d, in B such that (a) d,(x,y) = ” x—y || for all x and y in B and d, gives the
same uniform structure on B as the norm: (b) there exist two constants K, and K,
such that for every ze€B there exists a beB such that d(b*,z) <K, and
|2-d,(b,0) — d,(b%,0)| £ K, (dy(z,0)"".

ProoF. We put d'(x,y) =sup | xz — yz|. Since the group multiplication is
uniformly continuous, d is uniformly equivalent to the norm andd’'(x,y) =
2 |x—y|. And @’ is a group invariant metric. Now choose an &> 0 and let
d (x, y) be the infimum of the lengths of the e-chains between x and y in the metric
d’. Then d, is group invariant and d, gives the same uniform structure on B as d’.
For d(x,y) = d'(x,y) if d'(x,y) < &. We also have d,(x,y) 2 d'(x,y) 2 | x~»]|.
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And by (3) there is a K such that | x — y|| £ d(x,y) <K - |x—y [ if do(x, ) Z &
Thus (a) is proved. Choose K such that d,(x,y) < Ke if |x — y| <e.

Let z be a point in B and let 0 = x;, x, -+, x, = z be an ¢-chain whose length is
<d,(z,0) + & We form y,, = x,, x,L,, then y,y,-- ¥, = z. We can assume that
there is at most onej such that d,(y;,e) < ¢/2, otherwise by multiplying together
some of the y,: s we can obtain that this is fulfilled. We thus have ne = d,(z,0)
>(n/2 — 2)¢. In the same way as in the proof of Theorem 5.1.1 we now form the
n-dimensional cube with the 2" points O * y,, yi, -+ yi,- In the norm metric we have
Snax < ¢ in1 this cube. Thus we have min H bp— b,y ” < n'/?® . ¢ in this cube and so
mind,(byp., b)) £ K - n''" - ¢, Since d, is invariant and d(z,0) £ Xd,(»,,,0)
£d,(z,0)+¢ we have d,(z,0)=d(bp,0)+d(b,0)=d,(z,0)+¢ Since
d(b,,0) — K - n''"® - ¢ < d(b;p,0) £ dy(b,,0) + K - n'/"® - ¢ we have

d(z,0)— K -n'?" - £<2-d(b,0) <d,(2,0) + (K - n'/"® 4+ 1)e. 4
d(b},z)=d(bip, b)) <K -n'/Pm- ¢ (5)

Now we repeat the process above with z, = z - b, instead of z. Then we get
niezd,(z,0)2((n,/2) —2)e. And we get an element b, which satisfies
d(b2,z,) <K - nl/?® ¢ 2+ d (b,,0) £ de(z,,0) + (K - n,''"2+ 1)e. And then we
repeat the process with z, =z - b, ?- b, % and so on, We finsh the constructions
when we get to the first number m such that (n,,/2 —2)e <2 (K - nl/"® + 1)e
which certainly will occur. Since the reverse inequality holds for all sufficiently
large n,:s there is a constant K, such that K, = n,¢ = d(z,,0) =d,(z - b;>
e b2 ,0) =d(z,b] - b7 -+ - b}). Since by (4) we have d,(b;,0) < d (z;-4,0),
2<j<m,wehaved,(bybs--b,,0) < X ,d(b;,0)< X" 'd(z,,0)<(Zp~227)
+d(z,,0) £2-d[z,,0). This last inequality and (4) give that there is a constant
K, such that[2 d,(b;by++b,,0)—d, (bZb}--- b,ﬁ,O)I <K, - (d(z,0)'"® and
thus b = b,b, -+ b, satisfies the conditions of the theorem.

Theorem 5.1.2 gives that the group resembles a Banach space for large distances.
We get the

COROLLARY. If a subgroup G of a metric linear space is uniformly homeo-
morphic to a Banach space with roundness > 1, then in G sup,d(z,M) < oo
where M is the set of elements of the form 2y.

Proor. Let T: G — B be a uniform homeomorphism. Then B with the group
structure inducted by T becomes a Banach group which satisfies the conditions
of Theorem 5.1.2. Thus in B sup,d(y, T(M)) < cc in the norm metric and since
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T ~! with respect to this metric satisfies a first order Lipschitz condition for large
distances the corollary is proved.

ExampLE 5.1.1. The following closed connected subgroup of L,(0,1) is not
uniformly homeomorphic to any Banach space with roundness > 1 (as a con-
sequence of the corollary above). Let the group be the closed hull of the following
set G:G consists of the L,(0,1)-functions whose values on the interval
(1/(n + 1),1/n) are multiples of n? for every n = 1.

If G is a subgroup of the additive group of some metric linear space and G is not
a linear space, can G then be uniformly homeomorphic to a Banach space with
roundness > 1? This question is of central importance in the further development
of the theory. In view of Theorem 5.1.2 it seems natural to study subgroups of
Banach spaces, i.e. the Example 5.2.1 of this paper.

We now give the counterpart of Theorem 5.1.2 for uniformly convex Banach

spaces.

THEOREM 5.1.3. If in a commutative Banach group B, (1) B is uniformly
convex, (2) (x,y)— xy is uniformly continuous then we can introduce a group
invariant metric d, in B such that, (a) d(x,y) = H xX—y H for all x and y in B
and d, gives the same uniform structure on B as the the norm, (b) for every
& > 0 there is an w such that for every z with d,(z,0) > w there is a be B such
that d,(b%,2) £6 - (d(z,0)) and ]2 - d(b,0) — dg(b2,0)| <6 -(d(z,0)).

ProoOF. We define d, in exactly the same way as in the proof of Theorem 5.1.2.
This gives (a). We then consider a ze B and let 0 = x4, x, ‘-, X, = z be an g-chain
between 0 and z with length < d,(z,0) + &. We form y,, = x,, * X,,.%; and as in the
proof of Theorem 5.1.2 we can assume that there is at most one m with d,(y,,0)
< g/2. As in the proof of Theorem 5.1.2 we now form the n-dimensional cube
with the 2" points 0 * yy, s, -~ x,- Now if K is an arbitrary real number and 7 is
sufficiently large (how large depends on K,) then there is by Theorem 4.1.6 an
m,-diagonal, m; = m, in this cube with length < m, - ¢/K; in the norm metric
and thus with length m, - ¢ - K/K, in the metric d, where K is the constant
which appears in the proof of Theorem 5.1.2. We assume that the points of this
mq-diagonal can be written y;;yi, -+ ¥in, * X and y,;¥z +* Yo, * X where
ny+ny=my. Then d,(y11Viz""" VinsY21V22""" Yan,) Sy €+ K/K;. Weput
Y11¥12 Vim, = b1y and yy 33+ ¥y, = by We conmsider z; =z - bii - b
We can assume z; = ¥;¥, *** Y(n—m,y Otherwise we can renumber the y, : s so that
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this is the case. And we form the (n — m,)-dimensional cube which consists of
the 2"7™ elements O - y, y, - yi, where k; S n —m ;. Now if d,(z,,0) is suffi-
ciently large also in the (n — m,)-dimensional cube described above we can find
an m,-diagonal, m, = m, whose lengthin d,is < m, + ¢ - K/K,. We form b,, and
b,, in the same way as we formed b, ; and b,,. We then consider z, = z, - b3+ b5
and if d(z,,0) is sufficiently large we can repeat the process. We repeat the
process so many times that there is no more m;-diagonal, m; = m, with length
=< m; ¢ K/K,in d,in the cube we get. For every 6, > O there is an w; such that
if d,(z,0) > w, we have at this stage z = by1b,;---bj; * byybyy -+ by, + z; Where
d(z;,0)£0, - d(z,0).And we have d(b,1b,1 bj1,b;,b,,b;,)£d(2,0)- (3 ¢ K/K,).
By putting b = b;;b,; -+ b;; we see that the theorem is proved.

If d,(z,b*) is sufficiently large we can make the same construction of a square
root of the element y = z - b~ as we made when we constructed b from z an by
repeating this approximation process of square roots we obtain

THEOREM 5.1.4. If in a commutative Banach group B, (1) B is uniformly
convex, (2) (x,y) - xy is uniformly continuous then sup,d(x, M) < oo where M
is the set of element of the form y*.

We also get the following corollary which we give a slightly more general for-
mulation than the corollary of Theorem 5.1.2.

COROLLARY. If a commutative metric group is uniformly homeomorphic to
a uniformly convex Banach space then in the group sup,d{z, M) < oo where M
is the set of elements of the form y>.

The methods of constructing square roots described above give quite exact
information on the existence and largeness of square roots when we strengthen
the condition on the group multiplication to satisfy locally a first order Lipschitz
condition. This is shown by the theorem below.

THEOREM 5.1.5. Ifin a commutative local Banach group U (1) the Banach
space is uniformly convex or has roundness > 1, (2) ” Xo¥ — X1y ” <K “ Xy — Xq ”
Sforall x,,x, and y in some neighbourhood of 0 for some K, then we can introduce
a group invariant metric d, in some neighbourhood of 0 such that (a) K H X—y H
=d,(x,y)= ” X—y H for all x and y in some neighbourhood of 0 (b) to every z in
some neighbourhood of O and every ¢ > 0 we can find a b such that b* = z and
|di(z,0)— 2 - dy(b,0)| <.
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ProoF. We carry out the proof in detail only for the case when p, > 1. If U, is
a sufficiently small neighbourhood of 0 we can define d’(x, y) = sup “ Xz —yz ”
which gives an invariant écart in U,. Then we can define d,(x, y) to be the infimum
of the lengths in d’ of the arcs between x and y in U,. Then d; is defined and
gives an invariant metric in some neighbourhood U, of 0. Then d, satisfies (a)
which we see by considering the arc between x and y which is the linear segment
in the Banach space which connects x and y.

Now let z be an element sufficiently near 0, put d,(z,0) = r. If § is a positive real
number we can consider an arc between 0 and z with length < » 4+ § and for every
integer n = 1 we can consider a sequence of points 0 = x,x;, X, = z on the arc
such that d,(x;, X;4,) < (r +&)/n for all i. Put y, = x,, * x,,*,. For every n we
consider the n-dimensional cube with the 2" points 0 - y;, yy, - yi,. In this cube
the largest edge has length < (r + 0)/n in the norm metric and thus the smallest
n-diagonal (b, p, b,) has length < ((r + 8) - K - n'/? )/nin d, and this tends to 0 as
n— . However, to get a b with b> = z we have to repeat the process above with
z - by %. Then we can get a convergent series by, b b,,b;b,b,, -+ which converges
to a b with b = z. And if ¢ > 0 is given we can choose the length of the first arc
to be so near r and let the convergence to b be so fast that |d,(z,0) — 2 - d(b,0)|
< &. The proof in the case of a uniformly convex Banach space goes in the same
way with obvious modifications.

We shall say that two metric spaces are Lipschitz-equivalent if there is a one-to-
one mapping T: B, onto B, such that T and T-1 satisfy a first order Lipschitz
condition. We shall say that two metric groups are locally Lipschitz-equivalent
if some neighbourhood of e in one of the groups is Lipschitz-equivalent to some
neighbourhood of e in the other group. Theorem 5.1.5 gives the

COROLLARY. If a locally generated subgroup G of some metric linear space
is locally Lipschitz-equivalent to a Banach space, which is uniformly convex or
has roundness > 1, then G is a normable topological linear space.

We think that very little can be said about the existence of square roots in
commutative Banach groups without some geometrical condition on the Banach
space. However, we give the following

THEOREM 5.1.6. If in a commutative Banach group , || Xp¥ — X1y ” =<
Ku Xy — X4 H where K < 2, then every element of the group has a square root.

ProoF. Put d'(x,x,) = sup, H YX — YXq " . Then d’ is a group invariant metric
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in Band K- ||x— x| Zd'(x,x) 2| x— x, . Now for ze B we construct a
sequence y, which converges to a square root of z in the following way: put y, =0
and if y, is defined put y,,, = (y,+z - y, ')/2. Then we have ” Vn— ZVniy ”
S A 20r1) = A Oasrs 200 ) = (O + 2 - ¥a')2, 2y, )
SK-|Ontzya D2 —zyrt | = KJ2| ye— 2y (a)
Also || zy; ' = zyidi | S d'Gyah 2d) = G Yard) S K| Yo Yuer |
=K/2| ya—zy; ! (b
(a)and (b) give | (v, + 22" )/2—zynty | S K/2|| ya—zys *|| thatis || ypeq —zyrdy |
<Kj2 H y»—zy, ' |l. This inequality immediately gives y? — z as n— co. This
inequality also gives that y, is a convergent sequence for ” Vniz — Vne1 ][
=102] yurr — 2yii | SKI2- 12| 3 = 297 | = KJ2 | Yass = 30|

We think that Theorem 5.1.6 becomes false if we put K = 2, but we have not
succeeded in constructing a counter-example. The problem of constructing a
counter-example is a part of Problem 6.1.1 of the next chapter.

5.2. Groups generated by arcs in Banach spaces. We shall say that a con-
tinuous arc t - x(t), x(0) =0, 0 < ¢ < 1 in a Banach space B generates G if G is
the smallest closed subgroup of B which contains {x(¢)}. It is well-known that
every continuous arct — x(), x(0)=0, 0 < ¢ £ 1, in a finite-dimensional Banach
space generates a linear subspace of the Banach space. The theorems and example
below give information about the infinite-dimensional case.

THEOREM 5.2.1. If for the arc t—x(1), x(0)=0, 0<t<1 || x(t;) — x(t,) |
= o(“ t, =t ”1/“’) holds as |t2 —t 1 — 0 then t — x(t) generates a linear sub-
space of B.

Proor. It is sufficient to prove that in the group generated by ¢ — x(f) there
are elements arbitrarily close to (x(#))/2 for every t in [0,1]. Consider an x(t,) and
an n and form the elements y,, = x(mty/n) — x((m — 1)ty/n), 1 £ m < n. Then
Yi+ys+ 4y, =x(t). We form the n-dimensional cube formed by the 2*
elements O + yy, + y, + --- + y, where in every sum y, appears once or not
at all. In this cube we have by assumption s,,,. == o((1/n)*/P?) as n > co and thus
d i = Min H bp—b ” < Spax * 172 =0(1) as n— co. Since bp + b =x(t,) this
gives that there are elements arbitrarily close to x(1,)/2 in the group generated by
t - x(t). The theorem is proved.

EXAMPLE 5.2.1. For 1 < p £2 consider the arc in L,(0,1) where x(t) is the
function f(y) which is 1 on the interval 0 < y < t and 0 on the interval t < y < 1,



264 P. ENFLO Israel J. Math.,

Then |] x(t) — x(ty) ﬂ = ] t, — ]”P and ¢ — x(t) does not generate a linear sub-
space of L,(0,1). Since L,(0,1), 1 < p £2 has roundness p, the example shows
that theorem 5.2.1 is in a sense the best possible.

With an obvious modification of the proof we get

THeOREM 5.2.1. If for an arc t > x(1),x(0)=0, 0<t <1, in a uniformly

X(t2) = x(t) | K - |1, - ty| for all t,,t,€[0,1]
and some K, then t — x(t) generates a linear subspace of B.

convex Banach space B,

Theorem 5.2.1 suggests the problem if the following smallness property is
characteristic for Banach spaces isomorphic to a Hilbert space: every arc t — x(1),
x(0) =0, 0 <t <1, in the Banach space which satisfies || x(1,) — x(¢,) |
=o(lt2 - t1|”2) as |t2 - t1|—>0 generates a linear subspace of the Banach
space.

6. Uniform homeomorphisms and isomorphisms between topological linear spaces

6.1. In this chapter we turn from the more general metric commutative groups
to metric linear spaces. One of the results of the chapter shows that a locally
bounded linear space which is uniformly homeomorphic to a Hilbert space is iso-
morphic to the Hilbert space. There are several reasons for considering questions
of this type. First, in the corollary of Theorem 5.1.5 and in the theorems of
Chapter 7 of this paper we will arrive at a situation where we have two metric
linear spaces which are locally Lipschitz-equivalent or uniformly homeomorphic
and so the question inevitably arises if they are isomorphic. Secondly, it is well-
known that two finite-dimensional topological linear spaces which are locally
homeomorphic are isomorphic and so it is natural to ask if there is some corre-
sponding theorem for infinite-dimensional topological linear spaces. It has been
proved by Kadec [14] that all separable Banach spaces are homeomorphic and
in Mazur [15] it is proved that the L,(0, 1)-spaces, 1 < p < o0, are locally uniformly
homeomorphic and thus none of these conditions will imply linear isomorphism.
In Lindenstrauss [7], Henkin [16] and Enflo [2] and [3] several examples of
Banach spaces are given which are not uniformly homeomorphic and so uniform
equivalence seems to be a natural condition. The problems just mentioned and
also some other problems in the paper may all be regarded as special cases of the
following general

ProBLEM 6.1.1. To what extent is the following true: two connected uniform
groups with the same underlying uniform space are isomorphic.
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Problem 6.1.1 can also of course be investigated with some Lipschitz condition
or in the case of non-commutative groups with some extra differentiability or
analyticity condition. As a partial problem one can try to determine if a uniform
group which is Lipschitz-equivalent to some appropriate Banach space (in some
two-sided invariant metric) is commutative.

6.2. Loecally bounded linear spaces and Banach spaces.

THEOREM 6.2.1. Ifalocally bounded linear space is uniformly homeomorphic

to a Banach space with roundness > 1, then it is a normable space
ProOF. We begin with two lemmas.

LemMA 1. If d’ is an invariant metric in a locally bounded linear space M,
then there is a 6 > 0 such that, if a new metric d, is introduced in M by letting
d(x,v) be the infimum of the lengths of the g-chains between x and y, d Z ¢, then
there are constants C and w such that d(2b,0)= C - d(b,0) if d.(b,0) = w.

Proof. Let U be a bounded, balanced neighbourhood of 0 in M, choose d such
that d’(x,0) £ 6 = xe U and choose ¢ = 3. Then there is a K such that xeU
=d(x,0) £ Ke. Now let ze M and let xg, x4, -+, X, be an g-chain in d’ between 0
and z, with length < d.(z,0) 4+ ¢ and such that there is at most one i with
d'(x;,x;44) <¢g/2. Then (nj2 —2)¢=<d,(z,0)<ne. Now since U is balanced
X0sX1/2,%5/2,++ x,/2 is a Ke-chain in d, between 0 and z/2 and thus d(z/2,0)
< Kne. This proves the lemma.

LeMMA 2. Let d' be an invariant metric in a locally bounded linear space
and let d, be defined as in Lemma 1 where ¢ is chosen such that d'(x,0) Le
=xeU for some bounded, balanced neighbourhood U of 0. Then for every
0> 0and w> 0 there is a real N such that d,(x,0) > & = d(ax,0) > w if « > N.

Proor. Since U; = {x|d’(x,0) < &} is bounded the family of sets 1/t - Uy,
t > 0 forms a fundamental system of neighbourhoods of 0. Thus 1/t- U,
+ 1/t - U; = U, for some t >0 and so U, + U, = tU,. The last inclusion gives
U +U;+U;+U;ctU; +tU; ct*U; and so by induction we have
Ui+ U;+ -+ U;Q2"U;:s) " Uy, On the left side in the last inclusion we
have all points of M at distance < 2" - ¢ from 0. Now if for some m > 0 we have
x¢mU then ax¢ - U, if « > t"/m and so d,(ax,0) > 2" - ¢ in this case. Since
the family of sets m - U,m > 0, forms a fundamental system of neighbourhoods
of 0 the lemma is proved.
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ProOOF OF THEOREM 6.2.1. Let T be a uniform homeomorphism from the
locally bounded linear space M onto the Banach space B. Then B with the group
structure induced by T satisfies the conditions of Theorem 5.1.2. Thus we introduce
first an invariant metric d’ in M and then we introduce an invariant metric d, in
M by letting d,(x,y) be the infimum of the lengths of the s-chains between
When in the Proof of 5.1.2 we define d, (x, y) we can choose ¢ to be an arbitrary
positive number and now we choose it so small that the e-sphere around 0 in d’ is
contained in a bounded, balanced neighbourhood of 0. Now Theorem 5.1.2 gives
that there are numbers K, and K, such that for every z € M there is an element
of the form 2b at d-distance <K, from z and with |2 d,(b,0) — d,(2 b,0)|
< K, - (d(z,0))!/72 . The continuity property of x — x/2 proved in Lemma 1 now
gives that there exists a constant K; such that |2-d,(z/2,0) — d,(z,0)]
< K; - (d(z,00)7® for every ze M. We define d,(x,0) = lim,_, , (d (tx,,0))/t.
Then d,(x + y,0) £d,(x,0) + d,(»,0) and d,(ox,0) = |a| - d(x,0) for real o«: s.
Thus d, defines a seminorm on M. We have obviously d,(x,0) <d(x,0) and
Lemma 2 and the inequality |2 - d(z/2,0) — d,(z,0)| £ K; - (d,(z,0)) /P> give that
d, defines a norm on M which gives the same topolgy as d,. The theorem is proved.

As a consequence of Theorem 6.2.1 we see that L, (0,1) is not uniformly homeo-
morphic to L,(0,1)if 0<p<1,1<g< oo,

TueoreM 6.2.2. If a locally bounded linear space is uniformly homeo-
morphic to a uniformly convex Banach space, then an invariant metric d, can
be introduced in it such that lim,_, ,(d,(2nx,0))/(d(nx,0)) = 2, forall x and the
convergence is uniform in the set set Us= {x [ d,(x,0) > 8} for every 4.

The proof of this goes in the same way as the proof of Theorem 6.2.1 but since
Theorem 5.1.3 is weaker than Theorem 5.1.2 we cannot successfully introduce
the metric d, in this case.

6.3. Spaces uniformly homeomorphic to a Hilbert space

THEOREM 6.3.1. If a Banach space is uniformly homeomorphic to a Hilbert
space, then it is isomorphic to the Hilbert space.

Proor. The theorem follows from the lemmas below. If T is a Lipschitz map
between teo metric spaces then we put | T || = sup(d(T(x), T(»)))/(d(x, y)). If X
and Y are metric spaces we shall say that X is Lipschitz embeddable in Y if X is
Lipschitz-equivalent to some subset of Y. We say that the map 7' which gives
the Lipschitz-equivalence between X and a subset of Y is a Lipschitz embedding
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of X in Y. Our first lemma is a generalisation of a well-known theorem on iso-
metric embeddings in Hilbert space.

Lemma 1. If X is a separable metric space, then there exists a Lipschitz
embedding T of X in Hilbert space with ” TH H T-1 H < K if and only if for
every finite subset M of X there is a Lipschitz embedding Ty, of M in Hilbert
space such that | Ty | | T '] £ K.

ProoF. Let {a,} be a sequence such that {a,} is dense in X and let the Hilbert
space be represented as 1, (i.e. the space of real square-summable number sequen-
ces). Now suppose that every finite subset M of X is Lipschitz embeddable in
Hilbert space such thaat || Ty || | T | < K. Let M, be {a,],1 <y <n} and 1et
E, be the n-dimensional subspace of 1, which has the property that all numbers
after the n : th in all sequences of E, are 0. For all M,,and alla, we can choose Ty,
in such a way that T, (a,) € E,, such that Ty, (a,) =0 for all n and such that
H Ty, ” =1 for all n. We can find a sequence of positive integers n, such that
Ty, (a,) converges for this sequence and then we can find a subsequence of {n,}
such that T), (a3) converges for this subsequence. By repeating this process for
every a; and then finally choose a diagonal subsequence we obtain that for this
diagonal subsequence T}, (a;) converges for all a;. The limit gives an embedding
T of {a,} with the required properties and since {a,} is dense in X it can be ex-
tended to an embedding of all X in Hilbert space such that H T ” H T-! H =K.
The lemma is proved.

Lemwma 2. If a Banach space B is uniformly homeomorphic to a Hilbert space
then there is a K such that for every finite-dimensional subspace C of B there is
a Lipschitz embedding T of C in Hilbert space with H T H ” T-! ” =K.

Proor. Let T be a uniform homeomorphism from B onto the Hilbert space.
Then T and T~! both satisfy a Lipschitz condition for large distances say with
the Lipschitz constants K; and K,. Let M be a finite subset of C. Then by mul-
tiplying all vectors in M by a number n we get a set nM. If n is sufficiently large
then there is a Lipschitz embedding T,,, of nM in Hilbert space such that
| Tuse|| | Trd || S Ky - K, namely the Lipschitz embedding defined by the uniform
homeororphism. Thus there is a Lipschitz embedding T,, of M in Hilbert space
such that ” Ty H ” T H =K, ' K,.Now Lemma 1 applies to C and so Lemma 2
is proved.
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Lemma 3. If t—x(t) from [0, 1] into Hilbert space satisfies a first order
Lipschitz condition then it has a derivative for almost all t.

Proor. We can assume that the Hilbert space is separable. We represent it as
1, and consider t — (x,(),x,(t),--+). Then for almost all ¢, x(t) exists for every j.
This holds since for every j, t — x;(t) satisfies a first order Lipschitz condition.
If for some ¢, x(t,) exists for all j, then (x;(t,), x2(to), ) is an element of 1,,
otherwise t — x(t) would not satisfy a first order Lipschitz condition. However,
(x1(t), x5(to), ) is the derivative of t — x(¢) at t, if and only if as t - ¢, and
j—o we have [[(0,0,-+,0,x,(£),%;41(2),+) — (0,0, ,0,%x(t), X;41(t0) )]
= o([ t—t, l). The set of ¢ ; s where this does not hold is obviously measurable and
we assume that it has positive measure. Then, since for every 6 >0, t — x (1) is
continuous in a set of measure > 1 — 6 we have a set M of ¢ : s with the following
properties: (a) M has positive measure, (b) for every j, x;(?) exists for all ¢ in M
and x(¢) is continuous in M, (c) there is an ¢ > 0 such that for allt, in M and all
y >0 and w > 0 there are t and j, lt——to| <, j > w such that

” (090, "'ao’xj(t)sxj+ l(t)a“') - (0305 "'?O’ xj(to)axj+ 1(t0)9"') “ > Slt —1 l

Now choose a t,, t, € M, such that the average density of M at ¢, is 1. We consider
an interval to the right of t,, an integer j,, and a ¢, in this interval such that for
some N,

|| (0,03"'305xj1(t1)9xj1+1(t1)’"':le(tl)ao’O,"')
- (0,0, "',O,le(to)’xj1+1(t0):"'5 xn,(10),0,0,-) n > sltl - tol

Here we can first choose j, arbitrararily large and then t, arbitrarily near ¢,.
Now since the average density of M at ¢, is 1 and since

(03 09 ) Oa lel(t)s xj’1+ 1(t)9 "';xj\'ll(t)zos 0, "')

is continuous in M, if | t— t0| is sufficiently small then we must have

” (0, 09 "',0: xj,+ l(t)axJ{1+1(t)a -~-,x1(,1(t),0, 0’ ) ” g &

in a set M, of positive measure, M, = (M ---[t,,t,]). Now we can repeat the
process above with M, instead of M. Since we could choose j, arbitrarily large
we choose this time j, > N, and so we find a set M, of positive measure, M, = M,
such that

“ (0901 ,O,lel(t),le-1+1(t), sxlgh(t),oaoa aoalez(t)sxj’2+1(t): ’xllvz(t),09"'” 28\/2
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in M,. By repeating the process sufficiently large number of times we get a contra-
diction to the fact that ¢t — x(¢) satisfies a first order Lipschitz condition. The
lemma is proved.

In the next two lemmas we will consider finite-dimensional Banach spaces.

LemMA 4. If, for an n-dimensional Banach space B, there is a Lipschitz
embedding T,,, 0 £ m < n, of B into Hilbert space such that (a) T,, is linear on
some m-dimensional subspace C,, of B and T, is linear on every (m + 1)-dimen-
sional subspace of B which contains C,,

(®) | Tl |77 =K
then there is a Lipschitz-embedding of B into Hilbert space such that (a,) T,,,,

is linear on some (m + 1)-dimensional subspace C,,,, of B and T,,,, is linear

on every (m + 2)-dimensional subspace of B which contains C,,,,
(by) [ Tosrl| | Tmss | SK

ProOF. Let N be a countable set of points on the boundary of the unit sphere
of B such that N is dense on the boundary of the unit sphere. It follows from
Lemma 3 that for almost all x in B, T,, has a derivative in all directions of vectors
of N at x. Let x be such a point, x ¢ C,,. If T,, has a derivative T/, in the direction
on the vector a at x, we put T, (x + va) = T,(x) + v+ T,,/, for real v: s. This
defines T,,,{ on a dense subset of B. We have on this dense subset

. T, —
T 1(X + 0104) = T o(x + v,0;) = lim CLASLLY J;M(x )
r—=0

This equation gives that T,,, ; can be extended by continuity to all of B such that
” Ti1 |] ” Tops1 I] < K. We assume that this is done. We have

ere= lim L TCH D) ZTolx k)
r—=0

T.(x + rx) — T,(x)
r

+ lim

r—0

= T + Tul(X),

since T, is assured to be homogeneous. In this equation the existence of either
side implies the existence of the other. And if ¢,¢C, we have

- lim T (x + r(a + ¢,)) — T(x)

r—0 r

Tl

ma+tcy,

~ lim T.(re,) + T(x + ra) — T,(x)
r—=0 r

= T+ Tnlcn).
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The second last equality holds since T,, is linear on every (m + 1)-dimensional
subspace of B which contains C,. Now let C,,, be the (m 4 1)-dimensional
subspace of B generated by C,, and x. And let D,,,, be an (m + 2)-dimensional
subspace of B generated by C,,,, and an element a, ae N. Then we have
Toii(tx + ¢ + va) = Tppi(x—(1—0x + ¢, + va)y = T,(x)— T,(1—1)x
+ Ten)) + v T, = T,(tx) + T,(¢c,) + v - T, ,. This shows that T,,,, is linear
on D, ., and since N is dense on the boundary of the unit sphere in B, T, is
linear on every (m + 2)-dimensional subspace of B which contains C,,.,. The
lemma is proved.

LemMma 4. If for an n-dimensional Banach space B there exists a Lipschitz-
embedding T of B into Hilbert space such that || T|| || T-1 || < K then there
exists an isomorphism V from B onto Euclidean n-space such that ” V” H V-1 H
<Kk.

PrRoOOF. By considering a point x where T has a derivative in all directions of
N (defined in the preceding lemma) we get a homogenuous embedding of B into
Hilbert space with || T, |/[| 7o !| < K by defining

. T —
T = fim TEE) = TG)
r—0 r
if T has a derivative in the direction of y at x. We extend T, by continuity to ail
of B. Then the conditions of Lemma 4 are satisfied with m = 0. By applying

Lemma 4 n — 1 times and putting T,_, = V we get the desired isomorphism.

PrROOF OF THEOREM 6.3.1. We now apply the following theorem by Dvo-
retsky [17]: A Banach space is isomorphic to a Hilbert space if and only if there
is a real number K such that for every n and any two n-dimensional subspaces B,
and B, of B there is an isomorphism ¥: B, —» B, with |[V||V-'|<K. Ifa
Banach space is uniformly homeomorphic to a Hilbert space then Lemma 2 and
Lemma 5 show that the conditions of Dvoretsky’s theorem are satisfied and so the
Banach space is isomorphic to a Hilbert space. The theorem is proved.

Theorem 6.2.1 and Theorem 6.3.1 give, since a Hilbert space has roundness 2

THEOREM 6.3.2. Ifalocally bounded linear space is uniformly homeomorphic
to a Hilbert space, then it is isomorphic to the Hilbert space.

Since in the proofs of Lemma 4 and Lemma 5 above we could equally well
work with local embeddings, these lemmas and the conclusion of the proof of
Theorem 6.3.1 give
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THEOREM 6.3.3. If a Banach space is locally Lipschitz iembeddable a Hilbert
space, then it is isomorphic to a Hilbert space.
Theofem 6.3.1 and the corollary of Theorem 5.1.5 give

THEOREM 6.3.4. If a connected subgroup G of a metric linear space is locally
Lipschitz equivalent to a Hilbert space, then G is a linear space which is iso-
morphic to the Hilbert space.

We think that Theorem 6.3.3 becomes wrong if “‘locally Lipschitzembeddable™
is changed to ‘‘uniformly embeddable”. Theorem 6.3.4 becomes wrong if “‘locally
Lipschitz equivalent’” is changed to ‘‘Lipschitz embeddable in’’ as is shown by
Example 5.2.1, and we think that it remains false even if we assume that G is a
metric linear space.

The technique of Lemma 4 easily proves that if there is a local Lipschitz homeo-
morphism T between two finite-dimensional Banach spaces such that | T ||| T~
< K then there is an isomorphism V between the spaces with | V|| V| < K.
This result follows also directly from a theorem of Rademacher, which says that
a Lipschitz mapping from R, to R is differentiable almost everywhere. However,
the technique of Lemma 4 seems to be useful also when constructing isomorphisms
between infinite-dimensional Banach spaces assumed to be Lipschitz equivalent
but we have not worked out any details.

7. Structure theorems for commutative Banach groups

7.1. In this chapter we combine results from earlier sections to get some
results on the structure of commutative groups. We have

THEOREM 7.1.1. If for a commutative Banach group B with p,>1,
(a) ” (x5 — x1¥) H =of H Xy — X4 H”"") uniformly in x,,x, and y as sz —x1|1—>0,
(b) the group is uniformly dissipative, then the group is isomorphic to a Banach
space, and if B is a Hilbert space the group is isomorphic to B.

ProoF. Theorem 5.1.1 gives that the set of elements of the form y? is dense
n B. Then Theorem 2.2.3 gives that the group is locally bounded linear space
and then Theorem 6.2.1 and Theorem 6.3.1 complete the proof.

THEOREM 7.1.2. If for a commutative local Banach group U, where the
Banach space B is uniformly convex or has roundness >1 (a) I X3y — X1Y ”
= Kﬂ Xo — X4 H Sfor all x,,x, and y in some neighbourhood of O for some K,
(b) there is a neighbourhood V of 0 such that xeV, yeV and x* = y* > x =y,
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then the group is a local Banach space and if B is a Hilbert space then the
group is a local Hilbert space.

ProOF. Since we have assumed uniqueness of square roots we get when
applying Theorem 5.1.5 square roots on exactly half the distance to 0. Theorem
2.3.2 then shows that the group is a local Banach space and Theorem 6.3.1 gives
the case when B is a Hilbert space.

It is a natural question whether the condition (b) in Theorem 7.1.2 can be
removed.
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